منابع مشابه
Strong-field double ionization of rare gases.
We have studied the double ionization of helium and other rare gases using an electron-ion coincidence technique. With this scheme, the electron energy spectrum correlated to the creation of a doubly charged ion may be compiled. In all cases, the observed double ionization electron distributions are similar and enhanced at high energies, while the single ionization spectra exhibit distinct diff...
متن کاملStrong field double ionization of H2 : Insights from nonlinear dynamics
The uncorrelated (“sequential”) and correlated (“nonsequential”) double ionization of the H2 molecule in strong laser pulses is investigated using the tools of nonlinear dynamics. We focus on the phase-space dynamics of this system, specifically by finding the dynamical structures that regulate these ionization processes. The emerging picture complements the recollision scenario by clarifying t...
متن کاملElectron-electron momentum exchange in strong field double ionization.
We have investigated the momentum balance between the two electrons from strong field double ionization of argon at 780 nm and 1.9 x 10(14) W/cm(2). Experimental data show that perpendicular to the laser polarization direction the electrons emerge preferentially in opposite directions. Results of model calculations are found to agree well with the data and reveal a dominant role of the Coulomb ...
متن کاملStrong field double ionization: What is under the ''knee''?
Both uncorrelated (“sequential”) and correlated (“nonsequential”) processes contribute to the double ionization of the helium atom in strong laser pulses. The double ionization probability has a characteristic “knee” shape as a function of the intensity of the pulse. We investigate the phase-space dynamics of this system, specifically by finding the dynamical structures that regulate the ioniza...
متن کاملStrong-field nonsequential double ionization of Ar and Ne
We investigate the nonsequential double ionization (NSDI) of Ar and Ne based on quantitative rescattering theory (QRS). According to QRS theory, each elementary NSDI process can be calculated by multiplying the returning electron wave packet with appropriate differential electron-ion scattering cross sections. We include (e, 2e) and electron-impact excitation cross sections of Ar+ to obtain the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2019
ISSN: 2469-9926,2469-9934
DOI: 10.1103/physreva.100.043410